* More information about speed scores and RAM are available here.
Rank | Name | Team | Link | Score | LiDiRus | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | RuCoS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | HUMAN BENCHMARK | AGI NLP | 0.811 | 0.626 | 0.68 / 0.702 | 0.982 | 0.806 / 0.42 | 0.92 | 0.805 | 0.84 | 0.915 | 0.93 / 0.89 | |
2 | ruadapt Solar 10.7 twostage | RCC MSU | 0.805 | 0.591 | 0.597 / 0.594 | 0.916 | 0.946 / 0.837 | 0.927 | 0.739 | 0.844 | 0.933 | 0.82 / 0.797 | |
3 | Mistral 7B LoRA | Saiga team | 0.763 | 0.46 | 0.529 / 0.573 | 0.824 | 0.927 / 0.787 | 0.888 | 0.758 | 0.786 | 0.919 | 0.83 / 0.816 | |
4 | FRED-T5 1.7B finetune | SberDevices | 0.762 | 0.497 | 0.497 / 0.541 | 0.842 | 0.916 / 0.773 | 0.871 | 0.823 | 0.669 | 0.889 | 0.9 / 0.902 | |
5 | Golden Transformer v2.0 | Avengers Ensemble | 0.755 | 0.515 | 0.384 / 0.534 | 0.906 | 0.936 / 0.804 | 0.877 | 0.687 | 0.643 | 0.911 | 0.92 / 0.924 | |
6 | LLaMA-2 13B LoRA | Saiga team | 0.718 | 0.398 | 0.489 / 0.543 | 0.784 | 0.919 / 0.761 | 0.793 | 0.74 | 0.714 | 0.907 | 0.78 / 0.76 | |
7 | Saiga 13B LoRA | Saiga team | 0.712 | 0.436 | 0.439 / 0.5 | 0.694 | 0.898 / 0.704 | 0.865 | 0.728 | 0.714 | 0.862 | 0.85 / 0.83 | |
8 | YaLM p-tune (3.3B frozen + 40k trainable params) | Yandex | 0.711 | 0.364 | 0.357 / 0.479 | 0.834 | 0.892 / 0.707 | 0.841 | 0.71 | 0.669 | 0.85 | 0.92 / 0.916 | |
9 | ruadapt LLaMA-2 7B LoRA | RCC MSU | 0.71 | 0.417 | 0.545 / 0.555 | 0.756 | 0.894 / 0.695 | 0.876 | 0.668 | 0.708 | 0.878 | 0.76 / 0.733 | |
10 | FRED-T5 large finetune | SberDevices | 0.706 | 0.389 | 0.456 / 0.546 | 0.776 | 0.887 / 0.678 | 0.801 | 0.775 | 0.669 | 0.799 | 0.87 / 0.863 | |
11 | RuLeanALBERT | Yandex Research | 0.698 | 0.403 | 0.361 / 0.413 | 0.796 | 0.874 / 0.654 | 0.812 | 0.789 | 0.669 | 0.76 | 0.9 / 0.902 | |
12 | FRED-T5 1.7B (only encoder 760M) finetune | SberDevices | 0.694 | 0.421 | 0.311 / 0.441 | 0.806 | 0.882 / 0.666 | 0.831 | 0.723 | 0.669 | 0.735 | 0.91 / 0.911 | |
13 | ruT5-large finetune | SberDevices | 0.686 | 0.32 | 0.45 / 0.532 | 0.764 | 0.855 / 0.608 | 0.775 | 0.773 | 0.669 | 0.79 | 0.86 / 0.859 | |
14 | ruRoberta-large finetune | SberDevices | 0.684 | 0.343 | 0.357 / 0.518 | 0.722 | 0.861 / 0.63 | 0.801 | 0.748 | 0.669 | 0.82 | 0.87 / 0.867 | |
15 | gpt-3.5-turbo zero-shot | Saiga team | 0.682 | 0.422 | 0.484 / 0.505 | 0.888 | 0.817 / 0.532 | 0.795 | 0.596 | 0.714 | 0.878 | 0.68 / 0.667 | |
16 | Golden Transformer v1.0 | Avengers Ensemble | 0.679 | 0.0 | 0.406 / 0.546 | 0.908 | 0.941 / 0.819 | 0.871 | 0.587 | 0.545 | 0.917 | 0.92 / 0.924 | |
17 | xlm-roberta-large (Facebook) finetune | SberDevices | 0.654 | 0.369 | 0.328 / 0.457 | 0.59 | 0.809 / 0.501 | 0.798 | 0.765 | 0.669 | 0.757 | 0.89 / 0.886 | |
18 | mdeberta-v3-base (Microsoft) finetune | SberDevices | 0.651 | 0.332 | 0.27 / 0.489 | 0.716 | 0.825 / 0.531 | 0.783 | 0.727 | 0.669 | 0.708 | 0.87 / 0.868 | |
19 | Saiga2 70B zero-shot | Saiga team | 0.643 | 0.365 | 0.385 / 0.461 | 0.82 | 0.669 / 0.098 | 0.811 | 0.59 | 0.831 | 0.878 | 0.69 / 0.678 | |
20 | Saiga Mistral 7B zero-shot | Saiga team | 0.635 | 0.322 | 0.436 / 0.5 | 0.698 | 0.84 / 0.553 | 0.807 | 0.587 | 0.727 | 0.839 | 0.58 / 0.571 | |
21 | ruT5-base finetune | Sberdevices | 0.635 | 0.267 | 0.423 / 0.461 | 0.636 | 0.808 / 0.475 | 0.736 | 0.707 | 0.669 | 0.769 | 0.85 / 0.847 | |
22 | ruBert-large finetune | SberDevices | 0.62 | 0.235 | 0.356 / 0.5 | 0.656 | 0.778 / 0.436 | 0.704 | 0.707 | 0.669 | 0.773 | 0.81 / 0.805 | |
23 | ruBert-base finetune | SberDevices | 0.578 | 0.224 | 0.333 / 0.509 | 0.476 | 0.742 / 0.399 | 0.703 | 0.706 | 0.669 | 0.712 | 0.74 / 0.716 | |
24 | YaLM 1.0B few-shot | Yandex | 0.577 | 0.124 | 0.408 / 0.447 | 0.766 | 0.673 / 0.364 | 0.605 | 0.587 | 0.669 | 0.637 | 0.86 / 0.859 | |
25 | Saiga 13B zero-shot | Saiga team | 0.554 | 0.293 | 0.42 / 0.466 | 0.63 | 0.681 / 0.223 | 0.702 | 0.565 | 0.675 | 0.763 | 0.47 / 0.458 | |
26 | RuGPT3XL few-shot | SberDevices | 0.535 | 0.096 | 0.302 / 0.418 | 0.676 | 0.74 / 0.546 | 0.573 | 0.565 | 0.649 | 0.59 | 0.67 / 0.665 | |
27 | ruElectra-medium finetune | SberDevices | 0.524 | 0.182 | 0.413 / 0.525 | 0.576 | 0.615 / 0.189 | 0.544 | 0.649 | 0.669 | 0.6 | 0.63 / 0.624 | |
28 | ruElectra-large finetune | SberDevices | 0.522 | 0.197 | 0.386 / 0.459 | 0.644 | 0.549 / 0.078 | 0.583 | 0.632 | 0.669 | 0.627 | 0.61 / 0.607 | |
29 | RuBERT plain | DeepPavlov | 0.521 | 0.191 | 0.367 / 0.463 | 0.574 | 0.711 / 0.324 | 0.642 | 0.726 | 0.669 | 0.639 | 0.32 / 0.314 | |
30 | SBERT_Large_mt_ru_finetuning | SberDevices | 0.514 | 0.218 | 0.351 / 0.486 | 0.498 | 0.642 / 0.319 | 0.637 | 0.657 | 0.675 | 0.697 | 0.35 / 0.347 | |
31 | SBERT_Large | SberDevices | 0.51 | 0.209 | 0.371 / 0.452 | 0.498 | 0.646 / 0.327 | 0.637 | 0.654 | 0.662 | 0.675 | 0.36 / 0.351 | |
32 | Qwen 4B saiga zero-shot | Maxim Bolgov | 0.505 | 0.274 | 0.361 / 0.493 | 0.554 | 0.656 / 0.112 | 0.655 | 0.57 | 0.623 | 0.661 | 0.4 / 0.395 | |
33 | ruElectra-small finetune | SberDevices | 0.505 | 0.106 | 0.346 / 0.461 | 0.564 | 0.628 / 0.21 | 0.54 | 0.592 | 0.669 | 0.658 | 0.6 / 0.596 | |
34 | RuGPT3Large | SberDevices | 0.505 | 0.231 | 0.417 / 0.484 | 0.584 | 0.729 / 0.333 | 0.654 | 0.647 | 0.636 | 0.604 | 0.21 / 0.202 | |
35 | RuBERT conversational | DeepPavlov | 0.5 | 0.178 | 0.452 / 0.484 | 0.508 | 0.687 / 0.278 | 0.64 | 0.729 | 0.669 | 0.606 | 0.22 / 0.218 | |
36 | Multilingual Bert | DeepPavlov | 0.495 | 0.189 | 0.367 / 0.445 | 0.528 | 0.639 / 0.239 | 0.617 | 0.69 | 0.669 | 0.624 | 0.29 / 0.29 | |
37 | heuristic majority | hse_ling | 0.468 | 0.147 | 0.4 / 0.438 | 0.478 | 0.671 / 0.237 | 0.549 | 0.595 | 0.669 | 0.642 | 0.26 / 0.257 | |
38 | RuGPT3Medium | SberDevices | 0.468 | 0.01 | 0.372 / 0.461 | 0.598 | 0.706 / 0.308 | 0.505 | 0.642 | 0.669 | 0.634 | 0.23 / 0.224 | |
39 | RuGPT3Small | SberDevices | 0.438 | -0.013 | 0.356 / 0.473 | 0.562 | 0.653 / 0.221 | 0.488 | 0.57 | 0.669 | 0.61 | 0.21 / 0.204 | |
40 | Baseline TF-IDF1.1 | AGI NLP | 0.434 | 0.06 | 0.301 / 0.441 | 0.486 | 0.587 / 0.242 | 0.471 | 0.57 | 0.662 | 0.621 | 0.26 / 0.252 | |
41 | Random weighted | hse_ling | 0.385 | 0.0 | 0.319 / 0.374 | 0.48 | 0.45 / 0.071 | 0.483 | 0.528 | 0.597 | 0.52 | 0.25 / 0.247 | |
42 | majority_class | hse_ling | 0.374 | 0.0 | 0.217 / 0.484 | 0.498 | 0.0 / 0.0 | 0.513 | 0.587 | 0.669 | 0.503 | 0.25 / 0.247 |