Jan. 18, 2023, 2:01 p.m.
Team: SberDevices
Dataset | Score | Metric |
---|---|---|
LiDiRus | 0.497 | Matthew`s Corr |
RCB | 0.497 / 0.541 | F1/Acc |
PARus | 0.842 | Accuracy |
MuSeRC | 0.916 / 0.773 | F1a/Em |
TERRa | 0.871 | Accuracy |
RUSSE | 0.823 | Accuracy |
RWSD | 0.669 | Accuracy |
DaNetQA | 0.889 | Accuracy |
RuCoS | 0.9 / 0.902 | F1/EM |
FRED-T5 1.7B (Full-scale Russian Enhanced Denoisers T5) Architecture based on T5. It has 24 layers and hidden size 1536. The model trained on a mixture of 7 denoisers like UL2 with several differences. It was trained on a Russian language corpus (300GB). The dataset is the same as for ruT5 models. Bbpe tokenizer. First half of the time model was trained on the small part of all datasets (1%,3GB) and without prefixes in each task. For RSG, we trained the model as described in the T5 paper. First, we trained to multitask for all rsg tasks. Then we took the best checkpoint for the task and trained it further. Model card – https://huggingface.co/sberbank-ai/FRED-T5-1.7B
Category | Score |
---|---|
LOGIC | 0.35169869588932245 |
KNOWLEDGE | 0.41950270175059584 |
PREDICATE-ARGUMENT STRUCTURE | 0.5373921746168259 |
LEXICAL SEMANTICS | 0.5574648062951351 |
Lexical Semantics - Lexical Entailment | 0.5179777310265292 |
---|---|
Lexical Semantics - Morphological Negation | 0.7319250547113999 |
Lexical Semantics - Factivity | 0.37619206243122316 |
Lexical Semantics - Symmetry/Collectivity | 0.6454972243679028 |
Lexical Semantics - Redundancy | 0.45652173913043476 |
Lexical Semantics - Named Entities | 0.5555555555555556 |
Lexical Semantics - Quantifiers | 0.500422753610212 |
Predicate-Argument Structure Core Args | 0.6928203230275509 |
Predicate-Argument Structure Prepositional Phrases | 0.655564782695531 |
Predicate-Argument Structure Ellipsis/Implicits | 0.47925723781702034 |
Predicate-Argument Structure Anaphora/Coreference | 0.44034755759456745 |
Predicate-Argument Structure Active/Passive | 0.35321924163127 |
Predicate-Argument Structure Nominalization | 0.8444444444444444 |
Predicate-Argument Structure Genitives/Partitives | 0.7637626158259734 |
Predicate-Argument Structure Datives | 0.629940788348712 |
Predicate-Argument Structure Relative Clauses | 0.4666666666666667 |
Predicate-Argument Structure Coordination Scopes | 0.48038446141526137 |
Predicate-Argument Structure Intersectivity | 0.36786594593516775 |
Predicate-Argument Structure Restrictivity | 0.4963635881027162 |
Logic Negation | 0.05704384514499037 |
Logic Double Negation | 0.38604948085158797 |
Logic Interval/Numbers | 0.15418961562809935 |
Logic Conjuction | 0.38666666666666666 |
Logic Disjunction | 0.2926976883388273 |
Logic Conditionals | 0.1972421118046462 |
Logic Universal | 0.7774288420142416 |
Logic Existential | 0.38981938376529196 |
Logic Temporal | 0.47306844125299624 |
Logic Upward Monotone | 0.837707816583391 |
Logic Downward Monotone | -0.311749325707824 |
Logic Non-Monotonic | 0.30434782608695654 |
Knowledge Common Sense | 0.43009118541033436 |
Knowledge World Knowledge | 0.39182408938141844 |
Dataset | Speed | RAM |
---|---|---|
LiDiRus | - | - |
RCB | - | - |
PARus | - | - |
MuSeRC | - | - |
TERRa | - | - |
RUSSE | - | - |
RWSD | - | - |
DaNetQA | - | - |
RuCoS | - | - |