Jan. 19, 2024, 1:26 p.m.
Team: RCC MSU
Model url: https://huggingface.co/rccmsu/ruadapt_llama2_7b_v0.1
Dataset | Score | Metric |
---|---|---|
LiDiRus | 0.417 | Matthew`s Corr |
RCB | 0.545 / 0.555 | F1/Acc |
PARus | 0.756 | Accuracy |
MuSeRC | 0.894 / 0.695 | F1a/Em |
TERRa | 0.876 | Accuracy |
RUSSE | 0.668 | Accuracy |
RWSD | 0.708 | Accuracy |
DaNetQA | 0.878 | Accuracy |
RuCoS | 0.76 / 0.733 | F1/EM |
Tikhomirov M., Chernyshev D. Impact of Tokenization on LLaMa Russian Adaptation //arXiv preprint arXiv:2312.02598. – 2023.
Tested using https://github.com/IlyaGusev/rulm repo { "trainer": { "evaluation_strategy": "steps", "per_device_train_batch_size": 4, "per_device_eval_batch_size": 4, "gradient_accumulation_steps": 32, "eval_steps": 50, "save_steps": 50, "logging_steps": 5, "learning_rate": 0.00025, "num_train_epochs": 3, "lr_scheduler_type": "cosine", "warmup_steps": 30, "fp16": true, "bf16": false, "torch_compile": false, "optim": "adamw_torch" }, "lora": { "r": 16, "lora_alpha": 16, "lora_dropout": 0.05, "bias": "none", "target_modules": ["q_proj", "v_proj", "k_proj", "o_proj"], "task_type": "CAUSAL_LM" }, "load_in_8bit": false, "only_target_loss": true, "mode": "chat", "templates_path": "internal_prompts/saiga_v2.json", "model_name": "llama2_7b_darulm_unigram_tie_2e_16_11_23", "model_type": "causal", "max_tokens_count": 1024 }
Category | Score |
---|---|
LOGIC | 0.3472109173849461 |
KNOWLEDGE | 0.3988089571509749 |
PREDICATE-ARGUMENT STRUCTURE | 0.4107842841297232 |
LEXICAL SEMANTICS | 0.4999636017616265 |
Lexical Semantics - Lexical Entailment | 0.5648145000600431 |
---|---|
Lexical Semantics - Morphological Negation | 0.39477101697586137 |
Lexical Semantics - Factivity | 0.4264014327112209 |
Lexical Semantics - Symmetry/Collectivity | 0.31622776601683794 |
Lexical Semantics - Redundancy | 0.17951965741648493 |
Lexical Semantics - Named Entities | 0.612056372482123 |
Lexical Semantics - Quantifiers | 0.3638714534805853 |
Predicate-Argument Structure Core Args | 0.30962962962962964 |
Predicate-Argument Structure Prepositional Phrases | 0.3943052207977212 |
Predicate-Argument Structure Ellipsis/Implicits | 0.6205427141408237 |
Predicate-Argument Structure Anaphora/Coreference | 0.4144368375833978 |
Predicate-Argument Structure Active/Passive | 0.4083133966424866 |
Predicate-Argument Structure Nominalization | 0.5444357229372963 |
Predicate-Argument Structure Genitives/Partitives | 0.6813851438692469 |
Predicate-Argument Structure Datives | 0.3563483225498992 |
Predicate-Argument Structure Relative Clauses | 0.6407232755171874 |
Predicate-Argument Structure Coordination Scopes | 0.14169568340005298 |
Predicate-Argument Structure Intersectivity | 0.42208132696637884 |
Predicate-Argument Structure Restrictivity | 0.36900620230837305 |
Logic Negation | 0.473553991329486 |
Logic Double Negation | 0.3892494720807615 |
Logic Interval/Numbers | 0.08779776400125335 |
Logic Conjuction | 0.33734954246999327 |
Logic Disjunction | 0.4365575409204501 |
Logic Conditionals | 0.3730235484764954 |
Logic Universal | 0.3959441875175622 |
Logic Existential | 0.17910620335162064 |
Logic Temporal | 0.11891767800211263 |
Logic Upward Monotone | 0.7009124021507408 |
Logic Downward Monotone | 0.16146816171752817 |
Logic Non-Monotonic | 0.39405520311955033 |
Knowledge Common Sense | 0.3600431599767098 |
Knowledge World Knowledge | 0.4447466812418805 |
Dataset | Speed | RAM |
---|---|---|
LiDiRus | - | - |
RCB | - | - |
PARus | - | - |
MuSeRC | - | - |
TERRa | - | - |
RUSSE | - | - |
RWSD | - | - |
DaNetQA | - | - |
RuCoS | - | - |