Новый сабмит YaLM p-tune (3.3B frozen + 40k trainable params)

9 ноября 2021 г. 10:19

Команда Yandex

Ссылка на модель https://habr.com/ru/company/yandex/blog/588214/


Результат бейзлайна: 0,711

Датасет Результат Метрика
LiDiRus 0,364 Кор, коэффициент Мэтью
RCB 0,357 / 0,479 F1/Точность
PARus 0,834 Точность
MuSeRC 0,892 / 0,707 F1a/Em
TERRa 0,841 Точность
RUSSE 0,71 Точность
RWSD 0,669 Точность
DaNetQA 0,85 Точность
RuCoS 0,92 / 0,916 F1/EM
Описание модели:

Another representative of YaLM — family of autoregressive transformers pretrained on large corpus of filtered runet, Russian Wikipedia, RDT and Taiga datasets, social media dialogs and articles from Yandex.News. The model has 28 layers (3.3 billion parameters). All tasks were solved with P-tuning: instead of using hand-crafted promts or complete fine-tuning, we optimize only 40k parameters on RSG training sets.


Описание параметров:

Диагностика: 0,364

Категория Результат
LOGIC 0,2220002391136312
KNOWLEDGE 0,3731079163231701
PREDICATE-ARGUMENT STRUCTURE 0,3379586695984027
LEXICAL SEMANTICS 0,4914961200052112
Lexical Semantics - Lexical Entailment 0,44614865235538076
Lexical Semantics - Morphological Negation 0,5619514869490163
Lexical Semantics - Factivity 0,45098039215686275
Lexical Semantics - Symmetry/Collectivity 0,570544330734548
Lexical Semantics - Redundancy 0,27348301713730944
Lexical Semantics - Named Entities 0,35355339059327373
Lexical Semantics - Quantifiers 0,32256184896566575
Predicate-Argument Structure Core Args 0,46312262138612026
Predicate-Argument Structure Prepositional Phrases 0,6257214261204825
Predicate-Argument Structure Ellipsis/Implicits 0,3490449235764129
Predicate-Argument Structure Anaphora/Coreference -0,004901960784313725
Predicate-Argument Structure Active/Passive 0,12565617248750865
Predicate-Argument Structure Nominalization 0,5017348819226064
Predicate-Argument Structure Genitives/Partitives 0,7637626158259734
Predicate-Argument Structure Datives 0,2058790548922549
Predicate-Argument Structure Relative Clauses 0,24370871833797697
Predicate-Argument Structure Coordination Scopes 0,366007208697342
Predicate-Argument Structure Intersectivity 0,2370100583365928
Predicate-Argument Structure Restrictivity 0,3619613829965134
Logic Negation 0,27900096804546626
Logic Double Negation 0,30151134457776363
Logic Interval/Numbers -0,27124713338229184
Logic Conjuction 0,6
Logic Disjunction 0,27608872259967787
Logic Conditionals 0,07100716024967263
Logic Universal 0,6446583712203042
Logic Existential 0,17910620335162064
Logic Temporal -0,15749883157896472
Logic Upward Monotone 0,7190325425674107
Logic Downward Monotone -0,22171945701357465
Logic Non-Monotonic 0,05572782125753529
Knowledge Common Sense 0,36452669663330906
Knowledge World Knowledge 0,36188997993038646

Производительность:

Датасет Speed RAM
LiDiRus - -
RCB - -
PARus - -
MuSeRC - -
TERRa - -
RUSSE - -
RWSD - -
DaNetQA - -
RuCoS - -